Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We analyzed the inverse Evershed flow (IEF) around a sunspot (NOAA 13131) using line scan observations in the Fei6173 Å and Caii8542 Å spectral lines, complemented with data products from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager. Line-of-sight (LOS) velocities were obtained for different bisector levels in both spectral lines. Additionally, the Caii8542 Å spectra were inverted using the Non-LTE Inversion COde using the Lorien Engine (or NICOLE) to retrieve the temperature and velocity stratification over different layers of the lower solar atmosphere. The IEF evolved dynamically in time and with height in the solar atmosphere. The flow speed associated with the IEF channels was on the order of 8 km s−1in the upper chromosphere, which decreased in the lower layers of the atmosphere. The flow was traced to the lower chromosphere in LOS velocity maps and the upper photosphere in intensity images. The temperature enhancements associated with the IEF were up to 300 K at logτ≈ −2 and 800 K at logτ≈ −6 near the end point of one channel. The overall appearance of the flow along the IEF channels seems consistent with a siphon flow model. We investigated the association of the IEF with the photospheric Evershed flow, but no obvious connection was found in our analysis. We also analyzed the effect of the IEF on moving magnetic features (MMF) selected near and away from IEF channels. MMFs moved radially outward with velocities in the 0.2–1 km s−1range, with no apparent association with the IEF.more » « lessFree, publicly-accessible full text available May 8, 2026
-
Abstract Sunspot light bridges (LBs) exhibit a wide range of short-lived phenomena in the chromosphere and transition region. In contrast, we use here data from the Multi-Application Solar Telescope (MAST), the Interface Region Imaging Spectrograph (IRIS), Hinode, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) to analyze the sustained heating over days in an LB in a regular sunspot. Chromospheric temperatures were retrieved from the MAST Caiiand IRIS Mgiilines by nonlocal thermodynamic equilibrium inversions. Line widths, Doppler shifts, and intensities were derived from the IRIS lines using Gaussian fits. Coronal temperatures were estimated through the differential emission measure, while the coronal magnetic field was obtained from an extrapolation of the HMI vector field. At the photosphere, the LB exhibits a granular morphology with field strengths of about 400 G and no significant electric currents. The sunspot does not fragment, and the LB remains stable for several days. The chromospheric temperature, IRIS line intensities and widths, and AIA 171 and 211 Å intensities are all enhanced in the LB with temperatures from 8000 K to 2.5 MK. Photospheric plasma motions remain small, while the chromosphere and transition region indicate predominantly redshifts of 5–20 km s−1with occasional supersonic downflows exceeding 100 km s−1. The excess thermal energy over the LB is about 3.2 × 1026erg and matches the radiative losses. It could be supplied by magnetic flux loss of the sunspot (7.5 × 1027erg), kinetic energy from the increase in the LB width (4 × 1028erg), or freefall of mass along the coronal loops (6.3 × 1026erg).more » « less
-
This white paper is on the HMCS Firefly mission concept study. Firefly focuses on the global structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the deciphering of the solar cycle, the conditions leading to the explosive activity, and the structure and dynamics of the corona as it drives the heliosphere.more » « less
An official website of the United States government
